State of Practice for the Design of Bridge Fender Systems with Polymeric Materials

Andrew J. Bechtel
Assistant Professor
Department of Civil Engineering

Phone: 609-771-2475

E-mail: bechtela@tcnj.edu

Impetus:

- NJDOT RFP-2014-15-02: Fiberglass Composite Materials Specification Redevelopment
- NJDOT Solicitation #108:
 Bridge Engineering Services
 for Maintenance Bridge
 Fender Replacement

Impetus:

- Redevelopment of Section 916: Fiberglass Composite Materials into a performance based specification
 - One main goal was to understand how and where theses materials are used
- One of the main uses is in pile supported bridge fender systems

Fender Systems:

Prevent Damage to Bridge

 35 people were killed when the Sunshine Skyway bridge was struck by a freighter and subsequently collapsed

Prevent Damage to Vessel

 The Cosco Busan dumbed 53,000 gallons of oil after striking a tower of the San Francisco-Oakland Bay Bridge

Fender Systems from Composite Materials:

Marine Borers in Timber

Corrosion of Steel and Concrete

Fender Systems from Composite Materials:

Marine Borers in Timber

Fender Systems:

- Design of Fender Systems is an iterative process based on energy absorption (AASHTO: 3.14.15).
 - The kinetic energy of a moving vessel is dissipated by work done by flexure, shear, and torsion in the fender system
- The energy dissipated can be estimated from the area under the load deflection curve of the fender system

Fender Piles:

- Fender piles are designed for:
 - Lateral Resistance (AASHTO: 10.7.3.12)
 - Pile structural resistance (AASHTO: 10.7.3.13)
 - Drivability (AASHTO: 10.7.8)

Lateral Resistance (AASHTO 10.7.3.12)

 Lateral resistance for a pile must be done using a method which accounts for load, geometry, and soil properties

$$EI\frac{d^4y}{dx^4} + P_x\frac{d^2y}{dx^2} + E_Sy = 0$$

 Differential equation solved by Ensoft L-pile

 Discrete element formulation used in FB-Multipier by the Bridge Software Institute at the University of Florida

Pile Structural Resistance and Drivability

- Articles 10.7.3.13 and 10.7.8 of the AASHTO Bridge
 Design Specifications address pile structural resistance
 and drivability for timber, steel, concrete, and
 prestressed concrete piles, respectively
- Provisions associated with piles made of polymer composite materials have not yet been developed.

Polymer Materials:

Creative Pultrusion

Series II CP076 203mm X 6.35 mm (8 in. X 0.25 in.) E-glass reinforcement Vinyl Ester Matrix

Harbor Technologies

HarborPile 311mm (12.25 in.) O.D. 8 ply E-glass reinforcement Polyurethane or Vinyl Ester Matrix

Lancaster Composite

CP40 323 mm (12.7 in.) O.D. E-glass reinforcement Epoxy or Polyester Matrix Concrete Infill

Bedford Technologies

SeaPile 330mm (13 in.) O.D. Pile Material: High Density Polyethylene 13 FRP reinforcing bars Bar Diameter 41 mm (1.625 in.) Bar: E-glass reinforcement Bar: Polyester Matrix

SeaTimber 305 mm X 305 mm (12 in. X 12 in.) Pile Material: High Density Polyethylene 4 FRP reinforcing bars Bar Diameter 38 mm (1.5 in.) Bar: E-glass reinforcement Bar: Polyester Matrix

TU455 305mm X 9.52 mm (12 in. X 0.375 in.) E-glass reinforcement Polyurethane Matrix

- Proper analysis of polymer composite fender systems must account for the inherent anisotropic and viscoelastic properties of the material
- When performing the P-y analysis, the shear deformation of the pile cannot be ignored.

- To evaluate the significance of shear deformation on lateral deflection, P-y analyses were performed to compare a steel pipe pile to a SeaPile ® using a general FEA software
 - Pile discretized into 84 elements
 - Static nonlinear analysis performed

Analysis	Steel Pipe Pile	SeaPile®
COM624	1.19 mm (0.0467 in.)	12.7 mm (0.500 in.)
FEA-B	1.16 mm (0.0455 in.)	13.1 mm (0.516 in.)
FEA-T	1.22 mm (0.0481 in.)	16.4 mm (0.644 in.)

Analysis	Steel Pipe Pile	SeaPile®
COM624	1.19 mm (0.0467 in.)	12.7 mm (0.500 in.)
FEA-B	1.16 mm (0.0455 in.)	13.1 mm (0.516 in.)
FEA-T	1.22 mm (0.0481 in.)	16.4 mm (0.644 in.)

25% Increase

 Depending on the limiting factor of the design, neglecting shear deformation can lead to unconservative estimates of the amount of energy absorbed

Strength Limit State:

 The strength of polymer composite piles can theoretically be estimated from existing guidelines and standards

ASTM D7258-14: Standard Specification for Polymer Piles

The ASCE Pre-Standard for Load & Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) Structures

The AASHTO LRFD Guide Specifications for Design of Concrete-Filled FRP Tubes for Flexural and Axial Members

ASTM D7258-14

- Claims applicability to all polymer composite pile systems
- The specification contains technical flaws that can jeopardize safety of some polymer composite pile systems
 - Nominal flexural stress is based on the assumption that each material will fail due to rupture at the extreme outer fiber.
 - Multiple other failure modes have been observed by multiple authors (Fam and Rizkalla, 2002; Polyzois et al., 1998; Mirmiran et al., 2000; and Zureick and Kim, 2002.)
 - Assumptions made in the development of stability factors are not applicable to piles made of anisotropic materials

ASCE Prestandard

- Represents base technical background information upon which future standards will be created
- No guidelines are given for the determination of the flexural and shear strength of circular tubes
- The document gives explicit equations for the axial strength of circular pultruded tubes, but it provides no guidance as to how to determine moduli values for these tubes
- The structural performance is determined by laboratory testing approved by the Engineer of Record

AASHTO LRFD Guide:

- Determination of strength requires the axial strength of the FRP tube determined in accordance with ASTM D3039
- Coupons conforming with ASTM D3039 cannot be excised from circular tubes
 - The coupons must be rectangular in cross-section
 - The coupons must be balanced and symmetric

Fender Design with Polymer Materials:

- Design of fenders requires a reliable estimate of <u>shear</u> <u>rigidity</u>, <u>flexural rigidity</u>, and <u>ultimate strength</u>
 - Can be accomplished through testing pile products as simply supported beams under one and two point loads
 - With an adequate number of tests (Approx. 10) the characteristic values of the material properties can be determined using ASTM D7290 and used directly in design
- Shear deformations can be conservatively neglected when design is governed by load and larger deformations are acceptable
- When deflection is the limiting design factor, shear deformations must be accounted for

Thanks:

Mac Rashid Fred Lovett Angelo Mendola Kimberly Sharp

> Vedrana Krstic Lauren Santullo Alberto Torres

Abdul-Hamid Zureick

Aravinda Ramakrishna Raymond Mankbadi

Paper #17-01014

Paper #17-01014

New tests:

